Skip to contents

Clustering functions

Functions to perform the actual cluster analysis

fuzzyclara()
Perform clustering
clustering_clara()
Perform CLARA clustering algorithm
clustering_clarans()
Perform CLARANS clustering
clustering_sample()
Perform clustering algorithm on a data sample
clustering_local()
Perform a local iteration of CLARANS clustering

Helper functions for cluster analysis

Functions to support the computation of the cluster analysis

assign_cluster()
Assign a cluster to each observation of the entire dataset
calculate_memb_score()
Calculate membership score of one observation for each medoid
compute_distance_matrix()
Compute the dissimilarity matrix for a data sample
perform_sample_clustering()
Perform pam or vegclust clustering on a data sample
print_logMessage()
Print diagnostic messages to console or log file
evaluate_cluster_numbers()
Visualization of the selection criterion for different cluster numbers
plot_cluster_numbers()
Function to provide graphical visualization for selecting the optimal number of clusters. The function provides graphical visualization showing the minimal (weighted) average distance for every cluster number.

Visualization functions for clustering results

Function to visualize clustering solutions in different ways

clara_boxplot()
Plot function boxplot
clara_barplot()
Plot function barplot
clara_pca()
Plot function PCA
clara_silhouette()
Plot function silhouette
clara_scatterplot()
Plot function scatterplot
clara_wordcloud()
Plot function wordcloud
clara_parallel()
Plot function parallel coordinate plot
plot(<fuzzyclara>)
Visualization of clustering solution by variables

Analysis function of clustering results

Further functions to analyze obtained clustering solutions

print(<fuzzyclara>)
Print output of "fuzzyclara" object
predict(<fuzzyclara>)
Prediction of cluster assignments

Datasets

Internal datasets to showcase the package functionalities.

travel
Data from the German Reiseanalyse survey