Create model summary tables for multiple estimated GAM models
Source:R/create_modelSummary.R
create_modelSummary.Rd
Create publication-ready summary tables of all linear and nonlinear effects
for models fitted with gam
or bam
.
The output format of the tables can be adjusted by passing arguments to
kable
via the ...
argument.
Arguments
- model_list
list of APC models
- digits
number of displayed digits
- method_expTransform
One of
c("simple","delta")
, stating if standard errors and confidence interval limits should be transformed by a simple exp transformation or using the delta method. The delta method can be unstable in situations and lead to negative confidence interval limits. Only used when the model was estimated with a log or logit link.- ...
additional arguments to
kable
Value
List of tables created with kable
.
Details
If the model was estimated with a log or logit link, the function automatically performs an exponential transformation of the effects.
The table for linear coefficients includes the estimated coefficient
(coef
), the corresponding standard error (se
), lower and upper
limits of 95% confidence intervals (CI_lower
, CI_upper
) and
the p-values for all coefficients apart from the intercept.
The table for nonlinear coefficients include the estimated degrees of freedom
(edf
) and the p-value for each estimate.
Author
Alexander Bauer alexander.bauer@stat.uni-muenchen.de
Examples
library(APCtools)
library(mgcv)
data(travel)
model <- gam(mainTrip_distance ~ te(age, period) + residence_region +
household_size + s(household_income), data = travel)
create_modelSummary(list(model), dat = travel)
#> [[1]]
#>
#>
#> |model |param | coef| se| CI_lower| CI_upper|pvalue |
#> |:-------|:-----------------------------------|--------:|-----:|--------:|--------:|:------|
#> |model 1 |(Intercept) | 2327.08| 39.99| 2248.70| 2405.45|- |
#> |model 1 |residence_regionFormer East Germany | -94.96| 42.69| -178.63| -11.30|0.0261 |
#> |model 1 |household_size2 persons | -545.63| 50.28| -644.18| -447.09|<.0001 |
#> |model 1 |household_size3 persons | -1164.36| 62.34| -1286.56| -1042.17|<.0001 |
#> |model 1 |household_size4 persons | -1506.61| 66.32| -1636.59| -1376.62|<.0001 |
#> |model 1 |household_size5+ persons | -1649.11| 94.82| -1834.96| -1463.26|<.0001 |
#>
#> [[2]]
#>
#>
#> |model |param | edf|pvalue |
#> |:-------|:-------------------|-----:|:------|
#> |model 1 |te(age,period) | 13.47|<.0001 |
#> |model 1 |s(household_income) | 8.30|<.0001 |
#>